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Abstract—Elastic reverse-time migration (ERTM), which uti-

lizes the advantages of both P- and S-wave modes, is a widely used

application for imaging in 3D anisotropic media. However, cross-

talk due to intrinsically coupled P- and S-wavefields may degrade

the image quality. To solve this problem, this study presents an

effective vector P- and S-wavefield decomposition scheme in

ERTM that can improve the images of 3D transversely isotropic

(TI) media. The proposed method consists of four steps: (1)

rotating the observation coordinate system to align its vertical axis

with the symmetry axis of 3D TI media; (2) deriving the formu-

lations of the 3D TI decomposition operator by applying the VTI

P/S wave-mode decomposition strategy based on eigenform anal-

ysis in the new coordinate system; (3) implementing vector P- and

S-wavefield decomposition by constructing the 3D TI Poisson

equation, and introducing a novel and efficient method based on the

first-order Taylor expansion to accelerate the computational effi-

ciency of the decomposition; and (4) applying a vector-based dot-

product imaging condition to generate PP and PS images. Com-

pared with previous studies, the algorithm of our proposed method

in 3D TI media is both numerically stable and computationally

efficient. The 3D TI decomposition operator generates vector P-

and S-wavefields showing the correct amplitude/phase with the

input ones. Several numerical examples illustrate the satisfactory

performance of the proposed 3D TI decomposition operator and the

effective image improvement.

Keywords: Elastic wavefield decomposition, Poisson’s equa-

tion, 3D transverse isotropic media, coordinate rotation, elastic

reverse-time migration.

1. Introduction

Acoustic reverse-time migration (ARTM) loses

shear waves by assuming zero shear velocity in the

symmetry directions (Duveneck et al., 2008; Fletcher

et al., 2009; Liu et al., 2019; Zhan et al., 2012; Zhang

& Zhang, 2008). However, the assumption does not

prevent the shear waves from propagating in other

directions. It generates diamond-shaped pseudo-shear

wavefronts that make the ARTM unstable, which

jeopardizes the image’s quality (Grechka et al., 2004;

Yoon et al., 2010; Zhang et al., 2009). With the

development of multi-component data acquisition

technology, elastic reverse-time migration (ERTM)

has been gradually applied to oil and gas exploration

and production. It considers the characteristics of

converted P-to-S waves which contain more infor-

mation related to anisotropy (Jin et al., 2010; Weibull

& Arntsen, 2014). The application of both P- and

S-waves can accurately image complex reservoir

structures such as gas chimneys compared with

ARTM (Caldwell, 1999; Zhao & Li, 2018; Zhao

et al., 2018).

However, coupled P- and S-wavefields produce

crosstalk noise that adversely influences image

quality. In anisotropic media, the popular elastic

wavefield separation is based on the polarization

directions from the solution of the Christoffel equa-

tion (Dellinger & Etgen, 1990). Non-stationary filters

are used as the separator for heterogeneous vertical
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transverse isotropy (VTI)/tilted transverse isotropy

(TTI) media to estimate the normalized polarization

directions (Yan & Sava, 2009a, 2009b). Nevertheless,

the separation of scalar P-waves and vector S-waves

produces multiple PS images impeding its 3D

application.

Another effective method based on vector elastic

wavefield decomposition can obtain vector P- and

S-wavefields which show consistent amplitude,

phase, and physical units with original inputs (Zhang

& McMechan, 2010). However, this method requires

a local homogeneous model assumption for

stable Fourier transforms. Low-rank approximation

simplifies the vector elastic wavefield decomposition

in the form of matrix multiplication in the space-

wavenumber domain (Cheng & Fomel, 2014). How-

ever, the 3D computational cost of the vector elastic

wavefield decomposition is prohibitively high

because of multiple fast Fourier transforms (FFTs)

corresponding to the selected ranks of low-rank

approximation.

Recently, based on the eigenform analysis of the

Christoffel equation, a pseudo-Helmholtz decompo-

sition method is developed (Yang et al., 2019). The

method mitigates the crosstalk artifacts and generates

high-quality PP and PS images in 2D heterogeneous

VTI/TTI media. The algorithm improves the com-

putational efficiency by using LU factorization to

solve Poisson’s equation. But the pseudo-Helmholtz

decomposition operators lead to incorrect amplitudes

of vector P- and S-wavefields because they possess a

mispositioned coefficient related to the local elastic

parameters. Later, a corrected pseudo-Helmholtz

decomposition operator is implemented in 3D VTI

and generates the vector decomposition wavefields

with the same amplitudes/phases as the input elastic

wavefields (Zuo et al., 2022). However, the corrected

pseudo-Helmholtz decomposition operator is not

suitable for 3D TI media. Because the corrected

operator overlooks the information of the tilted

symmetry axis, it cannot project the P- and S-wave-

fields in their polarization directions.

In this paper, we propose an efficient vector

elastic wavefield decomposition method for 3D TI

media based on the strategy of the corrected 3D VTI

pseudo-Helmholtz operator and apply the new

decomposition to 3D TI ERTM. First, we review the

corrected pseudo-Helmholtz decomposition method

for 3D VTI media by solving the eigenvalues and

eigenvectors of the Christoffel equation. Second, we

derive the 3D TI decomposition operator in a rota-

tional coordinate where its vertical axis is aligned

with the tilted symmetry axis. In the new coordina-

tion, the corrected pseudo-Helmholtz decomposition

for VTI can be directly applied in TI media. Then, we

implement the vector P- and S-wavefield decompo-

sition based on Poisson’s equation using the derived

3D TI operator. A fast algorithm is applied to reduce

the computation involved in solving Poisson’s equa-

tion. Finally, the 3D TI ERTM procedure based on

the derived decomposition method generates PP and

PS images using a vector-based dot-product imaging

condition.

The main differences between our derived

decomposition method for 3D TI media and the

previous work extend to 3D are:

1. The formula derivation of the 3D TI decomposi-

tion operator based on the Christoffel equation

using a rotational coordinate is superior to using

the Bond transform (Winterstein, 1990).

2. The derived decomposition operator for 3D TI

media shows the correct position of the local

elastic parameters, compared with the 2D pseudo-

Helmholtz decomposition operator (Yang et al.,

2019).

3. The proposed decomposition method for 3D TI

media outperforms the previous methods (Cheng

& Fomel, 2014) in terms of computational

efficiency.

2. Theory

2.1. Review of Estimating Polarization Directions

in 3D VTI

The eigenvalues and eigenvectors of the elastic

wave equation represent the different wave modes

(Tsvankin, 2001). The eigenvectors refer to the

polarizations of P-, SV-, and SH-waves. The elastic

decomposition operator based on their polarizations

can generate pure P- and S-wavefields. Based on the

elastic wavefield decomposition method in 3D VTI

J. Zuo et al. Pure Appl. Geophys.



(Zuo et al., 2022), the second-order elastic wave

equation in the frequency-wavenumber domain is

where kx, ky, and kz are the wavenumbers, Ux, Uy, and

Uz are the three components of the particle displace-

ment in the frequency-wavenumbers domain, q is the

density, and x is the angular frequency. The stiffness

matrix for VTI media is

C11 C12 C13

C12 C11 C13

C13 C13 C33

C44

C44

C66

2
666664

3
777775
; ð2Þ

where C12 ¼ C11 � 2C66. The stiffness parameters

are in terms of Thomsen parameters (Thomsen,

1986):

C33 ¼ qv2p ; C44 ¼ qv2s ; C11 ¼ 1þ 2eð Þqv2p; C66

¼ 1þ 2cð Þqv2s

C13 ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2dð Þv2p � v2s

h i
v2p � v2s

h ir
� qv2s ; ð3Þ

where vp and vs are the velocities of P- and S-waves

along the symmetry axis. e and c refer to the differ-

ences of P and S velocities along the vertical and

horizontal directions, respectively. d refers to the rate

of change of P velocity along the vertical direction.

Dividing both sides by the norm of wavenumber

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
, Eq. (1) is rewritten as

1

k2
qx2U ¼ 1

k2
AU; ð4Þ

where

A ¼
C11k2x þ C66k2y þ C44k2z C11 � C66ð Þkxky C13 þ C44ð Þkxkz

C11 � C66ð Þkxky C66k2x þ C11k2y þ C44k2z C13 þ C44ð Þkykz

C13 þ C44ð Þkxkz C13 þ C44ð Þkykz C44k2x þ C44k2y þ C33k2z

2
64

3
75,

and U ¼
Ux

Uy

Uz

2
4

3
5. x2

k2
refers to the square of the phase

velocity for each wave mode. qx2 and U are the

eigenvalue and eigenvector of the matrix A. Applying

the eigenform analysis to Eq. (4), the eigenvectors are

a1 ¼
kx

kyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2dð Þv2p�v2s½ � v2p�v2s½ �

p
1þ2eð Þv2p�v2s

kz

2
664

3
775;

a2 ¼
�ky

kx

0

2
4

3
5;

a3 ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2dð Þv2p�v2s½ � v2p�v2s½ �

p
1þ2eð Þv2p�v2s

kxkz

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2dð Þv2p�v2s½ � v2p�v2s½ �

p
1þ2eð Þv2p�v2s

kykz

k2x þ k2y

2
66664

3
77775
; ð5Þ

where a1, a2 and a3 are the polarizations of P-, SH-,

and SV-waves. In 3D VTI, the polarization directions

are mutually perpendicular. The corrected pseudo-

Helmholtz decomposition operator for 3D VTI can be

constructed using the polarization direction of the P

wave. In the space domain, the 3D VTI decomposi-

tion operator is

r3d vti ¼
ox

oy

roz

2
4

3
5; ð6Þ

where ox, oy, and oz are the spatial derivatives. The

local coefficient is defined as r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2dð Þv2p�v2s½ � v2p�v2s½ �

p
1þ2eð Þv2p�v2s

.

Detailed formulation derivation of the corrected

pseudo-Helmholtz decomposition can be found in

Zuo et al. (2022).

qx2
Ux

Uy

Uz

2
4

3
5 ¼

C11k2x þ C66k2y þ C44k2z C11 � C66ð Þkxky C13 þ C44ð Þkxkz

C11 � C66ð Þkxky C66k2x þ C11k2y þ C44k2z C13 þ C44ð Þkykz

C13 þ C44ð Þkxkz C13 þ C44ð Þkykz C44k2x þ C44k2y þ C33k2z

2
64

3
75

Ux

Uy

Uz

2
4

3
5; ð1Þ
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2.2. The Decomposition Operator for 3D TI Media

In this section, we derive the vector decomposi-

tion operator in 3D TI media. The geometrical

elements shown in the observation coordinate are

defined in Fig. 1b. h and u are the tilt and azimuthal

angles of the anisotropic symmetry axis. Because of

the symmetry of TI media, the rotated VTI media can

be seen as TI. In Fig. 1c, we rotate the observation

coordinate to align its vertical axis along the tilted

anisotropic symmetry axis.

Based on the geometrical relation, the rotational

coordinate is

x0

y0

z0

2
4

3
5 ¼ MR

x
y
z

2
4

3
5

¼
cos h cosux � cos h sinuy þ sin hz

sinux þ cosuy
� sin h cosux þ sin h sinuy þ cos hz

2
4

3
5;

ð7Þ

with the 3D rotation matrix

MR ¼
cos h cosu � cos h sinu sin h

sinu cosu 0

� sin h cosu sin h sinu cos h

2
4

3
5 ð8Þ

In the rotational coordinate, the 3D VTI elastic

wave decomposition method above can be directly

applied in TI. The new spatial partial derivatives are

o0x
o0y
o0z

2
4

3
5 ¼

cos h cosuox � cos h sinuoy þ sin hoz

sinuox þ cosuoy

� sin h cosuox þ sin h sinuoy þ cos hoz

2
4

3
5:

ð9Þ

The 3D TI decomposition operator is

r3d ti ¼
o0x
o0y

ro0z

2
64

3
75

¼
cos h cosuox � cos h sinuoy þ sin hoz

sinuox þ cosuoy

r � sin h cosuox þ sin h sinuoy þ cos hoz

� �

2
64

3
75:

ð10Þ

When h ¼ u ¼ 0, the operator is simplified to

VTI. For 3D isotropic media, the operator in Eq. (10)

becomes a gradient operator, i.e., r ¼
ox

oy

oz

2
4

3
5:

2.3. Vector Elastic Wavefield Decomposition in 3D

TI Media

Any elastic wavefield u can be decomposed into a

curl-free up and divergence-free us field (Aki &

Richards, 2002). For 3D TI media, with a proper

decomposition operator based on the polarization of

Figure 1
Schematics show the 3D VTI/TI media with an anisotropic symmetry axis and isotropic plane. a 3D VTI media in the observation

coordination. b 3D TI media with a tilted angle h and azimuthal angle u. c 3D TI media in the rotational coordinate with its vertical axis along

the tilted symmetry axis

J. Zuo et al. Pure Appl. Geophys.



each wave mode, the decomposed vector P- and S-

waves are given by

up ¼ r3d ti r3d ti � w
� �

;

us ¼ �r3d ti � r3d ti � w
� �

; ð11Þ

where w is a virtual wavefield that satisfies Poisson’s

equation, and is related to vector displacements by

u ¼ r2

3d tiw: ð12Þ

Note that the decomposition formulations are

simplified to up ¼ r r � wð Þ and us ¼ �r�
r� wð Þ with Poisson’s equation u ¼ r2w (Zhu,

2017) for isotropic media. Substituting the 3D TI

operator r3d ti into Eq. (12), Poisson’s equation is

given by

u ¼ r1o
2
x þ r2o

2
y þ r3o

2
z þ r4oxoy þ r5oxoz þ r6oyoz

� �
w:

ð13Þ

with r1 ¼ sin2 u þ cos2 u cos2 h þ r2 sin2 h
� �

, r2 ¼
cos2 uþ sin2 u cos2 h þ r2 sin2 h

� �
, r3 ¼ sin2 hþ

r2 cos2 h, r4 ¼ 2 sinu cosu 1� cos2 h � r2 sin2 h
� �

,

r5 ¼ 2 sin h cos h cosu 1� r2ð Þ, and r6 ¼
�2 sin h cos h sinu 1� r2ð Þ.

In the frequency-wavenumber domain, Poisson’s

equation is

U ¼ � r1k
2
x þ r2k

2
y þ r3k2z þ r4kxky þ r5kxkz þ r6kykz

� �
W ;

ð14Þ

where U and W are the Fourier transforms of the

original u and virtual w wavefields. LU factorization

is an effective approach to solving Poisson’s equation

(Zuo et al., 2022). But for complex anisotropic

structures, the decomposition approach still suffers

from expensive computational costs. Lately, a fast

algorithm is proposed to solve the virtual wavefield w

and improve the computational efficiency of the

vector P- and S-wavefield decomposition for 2D VTI

(Zhang et al., 2022). They use the first-order Taylor

expansion to approximate the partial derivative term

of Poisson’s equation and obtain an efficient

decomposition approach. In this paper, we extend the

2D fast algorithm to 3D and derive the formulation

for TI media. Equation (14) is simplified as

�f e; dð ÞU ¼ W ; ð15Þ

with

f e; dð Þ ¼ 1

r1k2x þ r2k2y þ r3k2z þ r4kxky þ r5kxkz þ r6kykz
:

ð16Þ

It is a function of the elastic parameters, the tilt

angle and azimuth of the symmetry axis, and the

propagation direction. Based on the weak anisotropic

assumption, we estimate Eq. (16) using first-order

Taylor expansion around e ¼ 0 and d ¼ 0. It is

approximated as

f e; dð Þ � 1

k2x þ k2y þ k2z
þ 1

k2x þ k2y þ k2z

� �2

� fP � ðsin2 h cos2 uk2x þ sin2 h sin2 uk2y

þ cos2 hk2z � 2 sin2 h sinu cosukxky

� 2 sin h cos h cosukxkz � 2 sin h cos h sinukykzÞ:

ð17Þ

with

fP ¼
2 2e� dð Þv2p

v2p � v2s
: ð18Þ

Substitute Eq. (17) into Eq. (15), and Poisson’s

equation is rewritten as

�U1 � fP sin
2 h cos2 uU2 � fP sin

2 h sin2 uU3

�fP cos
2 hU4 þ 2fP sin

2 h sinu cosuU5

þ2fP sin h cos h cosuU6 þ 2fP sin h cos h sinuU7 ¼ W

ð19Þ

with

U1 ¼
U

k2x þ k2y þ k2z
; U2 ¼

Uk2x

k2x þ k2y þ k2z

� �2
;

U3 ¼
Uk2y

k2x þ k2y þ k2z

� �2
; U4 ¼

Uk2z

k2x þ k2y þ k2z

� �2
;

U5 ¼
Ukxky

k2x þ k2y þ k2z

� �2
; U6 ¼

Ukxkz

k2x þ k2y þ k2z

� �2
:

U7 ¼
Ukykz

k2x þ k2y þ k2z

� �2

ð20Þ

Transforming Eq. (19) into the space domain,

Poisson’s equation is

Elastic Wavefield Decomposition for Reverse-Time Migration



� u1 � fP sin
2 h cos2 uu2 � fP sin

2 h sin2 uu3

� fP cos
2 hu4 þ 2fP sin

2 h sinu cosuu5

þ 2fP sin h cos h cosuu6 þ 2fP sin h cos h sinuu7 ¼ w;

ð21Þ

where u1, u2, u3, u4, u5, u6, and u7 are the forms of

U1, U2, U3, U4, U5, U6, and U7 in the time–space

domain.

We construct Poisson’s equation for 3D TI media

using Eq. (21). The approximated formulation con-

sists of three parts: the function fP associated with the

elastic parameters; the trigonometric function asso-

ciated with the tilt angle and azimuth of the symmetry

axis; the functions u1, u2, u3, u4, u5, u6, and u7

associated with the propagation direction of the

elastic wavefields. The first two functions related to

the elastic parameters are calculated in the space

domain. The functions with propagation direction

should be estimated in the frequency-wavenumber

domain. The workflow of our method is summed up

in Table 1.

2.4. 3D TI ERTM Using the Vector Elastic Wavefield

Decomposition

We introduce the vector elastic wavefield decom-

position into the 3D ERTM frame. Based on the

decomposed vector P- and S-wavefields, vector-based

dot-product imaging conditions are used to construct

PP and PS images (Zhu, 2017). For vector-based

ERTM, the equations of imaging conditions are

IPP x; y; zð Þ ¼
X

n

Z T

0

uP
s x; y; z; tð Þ � uP

r x; y; z; tð Þdt;

ð22Þ

IPS x; y; zð Þ ¼
X

n

Z T

0

uP
s x; y; z; tð Þ � uS

r x; y; z; tð Þdt;

ð23Þ

Table 1

The computational procedure of the elastic wavefield decomposition in 3D TI media

J. Zuo et al. Pure Appl. Geophys.



where IPP x; y; zð Þ and IPS x; y; zð Þ are the PP and PS

reflectivity images. n refers to the number of shots.

Subscript s and r represent the source and receiver

sides, respectively. Figure 2 presents a

flowchart showing the modified ERTM frame for 3D

TI media. The process of our proposed vector elastic

wavefield decomposition is marked in the green box.

2.5. A Homogeneous Model

We consider a homogeneous 3D TI model to

illustrate the performance of our proposed decompo-

sition method. The cubic model is 2� 2� 2 km with

a spatial spacing of 10 m. The elastic parameters are

vp ¼ 3:25km=s, vs ¼ 1:90km=s, q ¼ 2:00g=cm3,

e ¼ 0:22, d ¼ 0:22, c ¼ 0:00, h ¼ 30� and u ¼ 45�.

The extrapolated wavefields are calculated using the

second-order accuracy in time and a staggered-grid

finite-difference scheme with eighth-order accuracy

in space.

We set a directional source along the three

coordinate axes with a frequency of 25 Hz located

at the center of the model to excite elastic wavefields.

Figure 3 shows the input elastic wavefields from the

x, y, and z components of displacement. Decomposed

vector P- and SV-waves are marked by the blue and

white arrows. Figure 4 shows the decomposition

using the 3D isotropic operator. Strong energies are

observed for SV- and P-wave modes (black arrows)

in the vector P- and SV-wavefields, respectively.

Based on the local elastic parameters, the 3D VTI

operator is still unable to remove the energies

completely (Fig. 5). Figure 6 shows the decomposed

results using the 3D TI operator based on the tilt

angle and azimuth of the symmetry axis. The

numerical examples illustrate that only the operator

with correct elastic parameters can produce pure

vector P- and S-wave modes.

To compare the amplitude of wavefields before

(the black lines) and after (the red lines) decompo-

sition using different decomposition operators, we

extract a trace located at x ¼ 1000m and y ¼ 1000m

(Fig. 7). The decomposed P and SV amplitudes using

the isotropic operators are not correct. These traces

still display visible residuals shown in the green

boxes. The amplitudes of P and SV arrivals using

anisotropic decomposition operators are consistent

with the original ones. Only the 3D TI decomposition

Figure 2
The flowchart of the ERTM using our proposed decomposition for 3D TI media

Elastic Wavefield Decomposition for Reverse-Time Migration



Figure 3
a–c Input elastic wavefields in a 3D TI model

Figure 4
The elastic wavefield decomposition using the 3D isotropic operator. a–c Decomposed P-wavefields. d–f Decomposed SV-wavefields

J. Zuo et al. Pure Appl. Geophys.



method successfully decomposes both P and SV

arrivals.

3. Numerical Examples

We apply the decomposition method to 3D TI

ERTM on a two-layer model and a complex model

modified from the SEAM Arid model. The PP and PS

images both perform filtering.

3.1. 3D Two-Layer TI Model

The 3D TI two-layer model is discretized by a

grid of 3� 3� 2 km with a spatial interval of 10m.

To test the performance of the 3D TI operator in the

strong shear anisotropy, we increase the value of c.
The elastic parameters are shown in Table 2. The

layer is located at 1500 m. The displacement source

is a Ricker wavelet with a peak frequency of 20 Hz.

There are 85 shot gathers and 9801 receivers are

evenly distributed at a depth of 100 m. The spatial

interval of shots is approximately 40 m. In the

horizontal square, there are 99 receivers on each

side, with a spatial sampling interval of 30 m. Input

multi-component records are simulated by the exact

two-layer model. The elastic parameters in the

migration model are the same as that in the first

layer. We consider different ERTM procedures to

illustrate the performance of our proposed 3D TI

operator.

Figure 5
The elastic wavefield decomposition using the 3D VTI operator. The panels are in the same setting as Fig. 4

Elastic Wavefield Decomposition for Reverse-Time Migration



Figure 8 shows the multi-component simulated

wavefields from one shot. The propagation of SH

mode (red arrow) is elliptical because of the

enhanced shear anisotropy. Figure 9 depicts the

vector P- and S-wavefields decomposed by the 3D

isotropic operator showing strong crosstalk artifacts

(black arrows). Without considering the tilt angle and

azimuth of the symmetry axis, the 3D VTI operator

fails to generate clear P- and S-wave modes (Fig. 10).

As expected, Fig. 11 shows the well-decomposed

vector P- and S-wavefields using the proposed 3D TI

operator. SH and SV wave modes are coupled in the

S-wavefields.

Figure 12a and b show the PP and PS images

from 16 shots using 3D isotropic ERTM. There are

four shots on each side with an interval of 64 m.

Because of different phase velocities due to aniso-

tropy, the isotropic elastic wave equation causes

wrong travel times during wavefield extrapolation.

The wrong reflector image is located at about

1700 m. The isotropic operator produces crosstalk

as shown in Fig. 9 that causes the obvious artifacts

marked by the black arrow. Horizontal reflectors have

poor spatial resolution, especially for the PS image.

Figure 12c and d show the results from VTI ERTM.

The imaging artifacts (black arrows) are caused by

the inaccurate anisotropic decomposition operator. In

contrast, the 3D TI ERTM removes most of the

migration artifacts and produces clear PP and PS

images (Fig. 12e and f). With sufficient stacking of

85 shots (Fig. 13), the 3D VTI operators can suppress

most crosstalk artifacts, but the images using the 3D

Figure 6
The elastic wavefield decomposition using the 3D TI operator. The panels are in the same setting as Fig. 4

J. Zuo et al. Pure Appl. Geophys.



TI operator are clearer. The reflections from the TI

ERTM are more focused at the correct locations with

better illumination (yellow arrows).

3.2. 3D TI Complex Model

The second model is a small 3D portion extracted

from the SEAM Arid model (Oristaglio, 2012). The

portion size is 2� 2� 2 km with the same spatial

spacing. The spatial interval of shots is approximately

Figure 7
The comparison of displacement traces extracted from the multi-component wavefields. a, c, and e P arrivals. b, d, and f S arrivals. The input

elastic wavefields are marked by black lines. The decomposed P- and S-wavefields are marked by red lines
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28 m. There are 9801 receivers, with 99 on each side.

The interval is 20 m. To validate our proposed

method for 3D TI media, we transfer the elastic

model from HTI to TI. We increase the values of

anisotropic parameters to enhance the anisotropic

intensity (Fig. 14). The tilt angles and azimuth of the

symmetry axis are estimated from the vp and vs

models, respectively (Fig. 15). This modified model

is used to simulate the multi-component records and

compute the 3D TI operator. The elastic parameters

of the migration models are generated by smoothing

the true model using a box window with a length of

200m. The elastic wavefields are simulated using the

same space–time staggered-grid finite-difference

solution to the elastic wave equation.

Figure 16 shows the simulated multi-component

records using a Ricker wavelet with a peak frequency

of 20 Hz located at the depth of 100 m. For the

comparison of different modeling engines, we use

both the finite-difference and finite-element methods

to generate the observation records. Because of the

regular size of the model, their records are similar. So

we only show the records calculated by the finite-

difference method. The coupled P-, SV-, and SH-

mode are marked by the blue, white, and red arrows,

respectively. The 3D isotropic and VTI operators fail

and display visible crosstalk artifacts (black arrows in

Figs. 17 and 18). In contrast, the 3D TI operator is

capable of removing most of the crosstalk energies

and thus generates clearer P and S records (Fig. 19).

There are still some residual energies, especially the

SV- and SH-wavefields in the P records. The large

difference between e and d is the main reason for the

residual crosstalk energies. With the first-order Tay-

lor expansion there is some mismatch between the

estimated and exact eigenvalues.

Figure 20 shows the PP and PS images from 85

shot gathers via 3D ERTM with the different

decomposition methods. To improve the resolution,

source normalization is used for the ERTM imaging

condition. Compared with the anisotropic ERTM, the

images using the isotropic operator are unfocused

(black arrow shown in Fig. 20a). As expected, the

anisotropic ERTM using the 3D TI operator (Fig. 20e

Table 2

The elastic anisotropic parameters for a simple two-layer TI model

vp vs q e d c h u

Layer 1 3:25km/s 1:90km/s 2:00g/cm3 0:36 0:36 0:42 30� 21�

Layer 2 3.65km/s 2:25km/s 2:35g/cm3 0:37 0:38 0:44 33� 25�

Figure 8
The original 3D multiple wavefields shown at 0.5 s. The blue arrow indicates the reflected P-wave. The white and red arrows indicate the

direct SV-wave and SH-wave, respectively. The panels are in the same setting as Fig. 2
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and f) gives the best image at the locations where

medium parameters change rapidly. The PP and PS

stacking results are consistent with the true elastic

model (yellow arrows). These images provide more

structural information than VTI ERTM (Fig. 20c and

d). To compare clearly the performance of TI and

VTI ERTM, we extract 2D profiles from their 3D

images. In the x � z plane with y ¼ 1000m (Fig. 21),

for example, at the locations of the fault, the high-

angle structures are clearer from both PP and PS

images; at a depth of 1700 m, the horizontal layers in

the PP image are more coherent. In the horizontal

x � y plane at a depth of 960 m (Fig. 22), the

horizontal images display more detailed structures,

especially for PP images. For both 3D VTI and TI

operators, the quality of the deep PS image profile is

lower than that of the PP image because of the

different illumination angles between the two prop-

agation modes for the given geometry.

4. Discussion

The developed 3D TI operator is effective to

suppress the crosstalk artifacts and improve the

imaging accuracy of ERTM in 3D TI media. Our

proposed decomposition method is based on the first-

order Taylor expansion of f e; dð Þ around e ¼ 0 and

d ¼ 0. For the medium with a high degree of aniso-

tropy, there is a large difference between the exact

and approximated value of f e; dð Þ. But the misfit

mainly comes from the high wavenumber areas,

which contain very low reflection energy (Zhang

et al., 2022). Compared with previous elastic

Figure 9
The elastic wavefields decomposed using the 3D isotropic operator. The panels are in the same setting as Fig. 4
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wavefield decomposition methods, the innovations of

our method include:

1. Based on the eigenform analysis of the Christoffel

equation constructed by only one matrix rotation

of the coordinate system, our formula derivation

of the 3D TI decomposition operator is concise.

Another method of constructing the Christoffel

equation is using the Bond transform (Winterstein,

1990) in the observed coordinate system. The

stiffness matrix of 3D TI media is calculated by

the matrix multiplications between the Bond

rotation matrix and the stress/strain tensors. The

process of twice matrix rotations increases the

difficulty of formula derivation.

2. We derive the 3D TI decomposition operator

based on the theory of the corrected pseudo-

Helmholtz decomposition strategy in VTI (Zuo

et al., 2022) and the rotational coordinate accord-

ing to the tilted symmetry axis. The derived 3D TI

decomposition operator shows the correct position

of the coefficient related to local elastic parame-

ters, compared with the 2D pseudo-Helmholtz

decomposition operator (Yang et al., 2019). The

amplitudes/phases of P- and S-wavefields using

our derived 3D TI decomposition operator are

consistent with the original ones.

3. Our derived decomposition algorithm has the

advantage of lower computational efficiency com-

pared with other methods. The algorithm only uses

one FFT and seven inverse FFTs with the cost

8N log2 N. N is the grid point of a 3D TI model.

However, the corrected pseudo-Helmholtz decom-

position method for 3D VTI based on LU

factorization has a cost N3 (Zuo et al., 2022).

The traditional vector elastic wavefield

Figure 10
The elastic wavefields decomposed using the 3D VTI operator. The panels are in the same setting as Fig. 4

J. Zuo et al. Pure Appl. Geophys.



decomposition method based on low-rank approx-

imation has a cost of R � 2N log2 N where R is the

selected rank number (Cheng & Fomel, 2014).

4. We also compare the computation time of the

proposed 3D TI operator with other two methods.

Under the same computation environment, our

proposed decomposition method requires the least

time. The pseudo-Helmholtz decomposition needs

the most time because of LU factorization. Take

the Arid model as an example, the length of

simulated multi-component records is 1.8 s with a

time interval of 0.6 ms. Their computation times

are shown in Table 3.

5. Conclusion

We present a vector elastic wavefield decompo-

sition method for 3D TI media by solving the

Christoffel equation and applying it to ERTM. By

rotating the observation coordinate, we derive the

formulation of the 3D TI operator related to the tilt

angle and azimuth of the symmetry axis. It obtains

the amplitude-preserved P- and S-wavefields. To

improve the computational efficiency, we introduce a

fast method to implement the vector elastic wavefield

decomposition. Our algorithm has a lower cost

8N log2 N compared with other elastic wavefield

decomposition methods in 3D TI.

Figure 11
The elastic wavefields decomposed using the 3D TI operator. The panels are in the same setting as Fig. 4
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Figure 12
The 3D migration results from 16 shots using different decomposition methods. a and b PP and PS images using the isotropic ERTM. c and

d PP and PS images using the VTI ERTM. e and f PP and PS images from the TI ERTM procedure
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Figure 13
The 3D migrations from 85 shots using different decomposition methods. a and b PP and PS images using the VTI ERTM. c and d PP and PS

images using the TI ERTM procedure
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Figure 14
The elastic anisotropic parameters constructed from the SEAM 3D Arid sub-model. a P velocity vp. b S velocity vs. c Density q. d–f Thomson

coefficients e, d, and c

J. Zuo et al. Pure Appl. Geophys.



Figure 15
a and b Tilted angles h and azimuthal angle u of the symmetry axis, respectively

Figure 16
a–c Multi-component input seismic records. The P record is marked by the blue arrow. The SV and SH records are marked by the white and

red arrows, respectively
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Figure 17
The decomposed multi-component elastic records using the isotropic operator. The panels are in the same setting as in Fig. 4
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Figure 18
The decomposed multi-component elastic records using the 3D VTI operator. The panels are in the same setting as in Fig. 4
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Figure 19
The decomposed multi-component elastic records using the 3D TI operator. The panels are in the same setting as in Fig. 4
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Figure 20
The comparison of migrations using different decomposition methods. a and b PP and PS images using the isotropic ERTM. c and d PP and

PS images using the VTI ERTM. e and f PP and PS images using the TI ERTM procedure
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Figure 21
The 2D vertical sections extracted from Fig. 20. The panels are in the same setting as in Fig. 20
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Figure 22
The 2D horizontal sections extracted from Fig. 20. The panels are in the same setting as in Fig. 20
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