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ABSTRACT

P and S waves are coupled when propagating in anisotropic
elastic media. The separation of P and S waves helps to study
the characteristics of different types of seismic waves as well as
mitigating crosstalk artifacts in elastic reverse time migration
and elastic full-waveform inversion. At present, the methods of
seismic wave mode separation in anisotropic media are mainly
built on divergence- and curl-like operations, pseudo-Helmholtz
decomposition, and low-rank approximation. We develop a new
pseudo-Helmholtz decomposition operator based on eigenform
analysis and the wavefront phase direction to decompose vertically
transversely isotropic elastic wavefields. The corresponding

P-/S-wave decoupling formulas are also derived in detail. Com-
pared with the divergence- and curl-like methods, the new method
does not change the phase of P and S waves. Compared with
existing pseudo-Helmholtz decomposition methods based on ei-
genform analysis, our method achieves more accurate wavefield
separation than the zero-order pseudo-Helmholtz decomposition
operator. Our method requires solving one vector Poisson equation
only, resulting in much less computational cost than the existing
first-order pseudo-Helmholtz decomposition methods. In addition,
the accuracy of our method is analyzed by providing homogeneous
media with different parameter settings. Finally, the numerical ex-
amples demonstrate that the new pseudo-Helmholtz decomposi-
tion method is effective, efficient, and robust against random noise.

INTRODUCTION

P and S waves are coupled in the process of elastic wave propa-
gation.Wavemode separation can distinguish different types of waves
in complex media, which is conducive to studying the propagation
characteristics of different types of waves. Moreover, wave mode sep-
aration is a key step in suppressing crosstalk artifacts in elastic reverse
time migration (ERTM) (e.g., Sun et al., 2006; Yan and Sava, 2008;
Du et al., 2012; Wang and McMechan, 2015) and elastic full-wave-
form inversion (e.g., Ren and Liu, 2016; Wang and Cheng, 2017).
In isotropic media, the polarization directions of P and S waves

are parallel and perpendicular to the direction of wave propagation,
respectively. Therefore, the input wavefield can be decomposed using

the divergence and curl operators directly to obtain a scalar P wave
and a vector S wave (Dellinger and Etgen, 1990). However, the am-
plitude and phase of the separated P and S waves are incorrect. To
solve this problem, Zhang and McMechan (2010) propose a vector
wavefield decomposition method in the wavenumber domain based
on Helmholtz decomposition theory, which gives the correct ampli-
tude and phase. They also extend the Helmholtz decomposition theory
to vertically transversely isotropic (VTI) media. In contrast, Zhu
(2017) also proposes a vector wavefield decomposition method in
the spatial domain based on Helmholtz decomposition theory. This
method solves a vector Poisson equation with a fast sine transform.
The method of Zhu (2017) shares the same fundamental principle as
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the method of Zhang and McMechan (2010), but they are in two dif-
ferent domains. To improve efficiency, Zhao et al. (2018) and Yang
et al. (2018) avoid solving the vector Poisson equation by applying a
double integral on the source wavelet and a further scaling operation
with phase velocities. Inspired by the Zhu (2017) method, Zheng and
Yao (2023) propose a wavefield separation method based on the scalar
Poisson equation by using the relations among the operations of the
gradient, divergence, curl, and external derivative. This method only
needs to solve one Poisson equation, which significantly reduces the
computational cost compared with the Zhu (2017) method.
In the real world, most of the earth’s rocks are anisotropic elastic

media. In anisotropic media, P and S waves are neither parallel nor
perpendicular to the direction of wave propagation (Tsvankin, 2012).
Dellinger and Etgen (1990) present a wavefield separation technique
for anisotropic media. They solve the Christoffel equation in thewave-
number domain to obtain the eigenvectors, which indicate the polari-
zation direction of P and S waves for all required wavenumbers. Then,
an inverse Fourier transform is applied to form the separation operator
in the space domain. However, they only develop this method for
homogeneous media. Yan and Sava (2009) propose non-stationary
spatial filtering for anisotropic wavefield separation in heterogeneous
media. The separation accuracy depends on the length of the local
pseudo-derivative operator. The longer the operator is, the higher
the accuracy. They present the operator as long as 65. Methods of
Dellinger and Etgen (1990) and Yan and Sava (2009) are analog
to the divergence and curl operators for the isotropic case. Thus,
the phase and amplitude are incorrect.
To obtain the correct amplitude and phase of P and S wavefields,

Zhang and McMechan (2010) propose a VTI vector wavefield
decomposition method based on the Helmholtz theory and the
Christoffel equation in the wavenumber domain. The method
was carried out block by block for heterogeneous media. Each
block is treated as homogeneous. Cheng and Fomel (2014) use
the low-rank approximation to improve the efficiency of separating
anisotropic wavefields in the mixed domain, i.e., spatial and wave-
number domains, but it still requires multiple Fourier transforms.
Yang et al. (2019) propose zero- and first-order pseudo-Helmholtz

decomposition operators to decompose anisotropic wavefields in the
spatial domain based on eigenform analysis, wherein the auxiliary
wavefield is obtained by solving the Poisson equation using lower-upper
(LU) decomposition. This auxiliary wavefield can also be approximated
by applying the first-order Taylor expansion to the reciprocal of the
square of the modulus of the pseudo-gradient operator in the mixed
domain (Zhang et al., 2022), where one forward fast Fourier transform
(FFT) and two inverse FFTs are used for each component at each time
step of the 2D case. Zuo et al. (2022) derive the zero-order pseudo-
Helmholtz decomposition operator in the 3D case based on eigenform
analysis. The zero-order pseudo-Helmholtz decomposition operator can
perfectly decompose the P and Swaves for an elliptic anisotropic media.
However, for non-elliptic anisotropic media, there are noticeable wave-
field residuals, especially when jε − δj is large. Methods based on ei-
genform analysis solve the Christoffel equation analytically to obtain a
mathematical formula for the eigenvectors. In contrast, the separation
methods in the previous paragraphs solve the Christoffel equation
for the eigenvectors numerically. Therefore, when the model parameter
changes, the computation is repeated. One advantage of these numerical
methods is that they work for weak and strong anisotropy.
In this paper, we propose a new pseudo-Helmholtz decomposi-

tion operator based on the wavefront’s phase direction. There are

three advantages of the proposed wavefield decomposition method:
first, an approximated anisotropic Poisson equation is derived in the
space domain by making use of the phase direction. The accuracy
of the proposed anisotropic Poisson equation is higher than that
of the first-order pseudo-Helmholtz decomposition based on the
assumption of k2x ¼ k2z (Yang et al., 2019). Second, there are no
mixed high-order derivatives in the proposed decomposition oper-
ator; therefore, it has less computational cost than the existing
first-order pseudo-Helmholtz decomposition operators. Third, we
consider using the successive over-relaxation (SOR) method with
alternating sweeping orderings to solve the anisotropic Poisson
equation. This method is matrix-free and uses an iterative solution,
which can save computation and memory costs compared with LU
decomposition (Davis and Duff, 1997).
The rest of this paper is structured as follows. First, we conduct a

review of the Christoffel equation and pseudo-Helmholtz decompo-
sition, predicated upon an analysis of eigenforms. Subsequently, we
introduce a fresh first-order pseudo-Helmholtz decomposition ap-
proach that leverages the eigenform analysis and the wavefront’s
phase direction. To validate the effectiveness of the newmethod, three
numerical examples are presented. We end with some conclusions.

METHODOLOGY

Eigenvalues and vectors of the Christoffel equation

The 2D elastic VTI wave equation is (Aki and Richards, 2002;
Tsvankin, 2012)

(
ρðxÞ∂2uxðx;tÞ∂t2 ¼c11ðxÞ∂

2uxðx;tÞ
∂x2 þc55ðxÞ∂

2uxðx;tÞ
∂z2 þðc13ðxÞþc55ðxÞÞ∂

2uzðx;tÞ
∂x∂z

ρðxÞ∂2uzðx;tÞ∂t2 ¼c55ðxÞ∂
2uzðx;tÞ
∂x2 þc33ðxÞ∂

2uzðx;tÞ
∂z2 þðc13ðxÞþc55ðxÞÞ∂

2uxðx;tÞ
∂x∂z

;

(1)

where uxðx; tÞ and uzðx; tÞ denote the horizontal and vertical dis-
placements, respectively; x represents the Cartesian coordinate;
ρðxÞ is the density; and c11ðxÞ, c13ðxÞ, c33ðxÞ, and c55ðxÞ denote
the elements of the stiffness matrix for elastic VTI media. They
can be expressed by the Thomsen (1986) parameters as follows:

c11 ¼ ρð1þ 2εÞV2
P; c33 ¼ ρV2

P; c55 ¼ ρV2
S;

c13 ¼ ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ 2δÞV2

P − V2
S�½V2

P − V2
S�

q
− ρV2

S; (2)

where VP and VS are the P- and S-wave velocities along the sym-
metrical axes, respectively.
Based on a local homogeneous assumption, Fourier transforms of

equation 1 give the following Christoffel equation:�
c11k2x þ c55k2z − ρω2 ðc13 þ c55Þkxkz
ðc13 þ c55Þkxkz c55k2x þ c33k2z − ρω2

��
Ux

Uz

�
¼ 0:

(3)

If denoting

A ¼
�

c11k2x þ c55k2z ðc13 þ c55Þkxkz
ðc13 þ c55Þkxkz c55k2x þ c33k2z

�
; (4)

then λ ¼ ρω2 ¼ ρk2v2 is the eigenvalue of A, where k denotes the
wavenumber and v represents the phase velocity. The eigenvalues
of A are
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λ1;2 ¼ ρ
½ð1þ 2εÞV2

P þ V2
S�k2x þ ½V2

P þ V2
S�k2z

2

� ρ
½ð1þ 2εÞV2

P − V2
S�k2x þ ½V2

P − V2
S�k2z

2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ðδ − εÞV2

PðV2
P − V2

SÞk2xk2z
½ðð1þ 2εÞV2

P − V2
SÞk2x þ ðV2

P − V2
SÞk2z �2

s
; (5)

and the associated eigenvectors are

8>>>>><
>>>>>:

V1 ¼
"
kx
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ2δÞV2

P
−V2

S
�½V2

P
−V2

S
�

p
k2xkz

λ1−ρðV2
S
k2xþV2

P
k2z Þ

#

V2 ¼
"

−ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ2δÞV2

P
−V2

S
�½V2

P
−V2

S
�

p
k2xkz

λ2−ρðð1þ2εÞV2
P
k2xþV2

S
k2z Þ

−kx

# : (6)

The eigenvectors V1 and V2 indicate the polarization directions
of the P and S waves, respectively (Dellinger and Etgen, 1990). As
V1 and V2 are perpendicular to each other in anisotropic media, the
P and S waves can be separated by projecting the vector wavefield,
e.g., displacement and particle velocity, to the eigenvector di-
rections.

Pseudo-Helmholtz decomposition

The anisotropic elastic wavefield U in the wavenumber domain
can be expressed as

U ¼ UP
0 þ US

0 ; (7)

where U ¼ ðUx;UzÞ is the wavefield in the wavenumber domain
obtained by applying the Fourier transform to u ¼ ðux; uzÞ. The
terms UP

0 and US
0 are the vector P and S wavefields, respectively.

Because the pseudo-Helmholtz decomposition gives an approxima-
tion of P and S wavefields,UP andUS denote the approximate P and
S wavefields produced by the pseudo-Helmholtz decomposition in
the rest of the paper.
By applying the first-order Taylor expansion on equation 5 (details

are shown in Appendix A), the eigenvectorV1 becomes D1, which is

D1 ¼
�
kx
rkz

�
; (8)

with

r ¼ r2

r1 þ r4k2z
r1k2xþr3k2z

;

r1 ¼ ð1þ 2εÞV2
P − V2

S;

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ 2δÞV2

P − V2
S�½V2

P − V2
S�

q
;

r3 ¼ V2
P − V2

S;

r4 ¼ 2ðδ − εÞV2
PðV2

P − V2
SÞ: (9)

By projecting the anisotropic elastic wavefield U onto the direc-
tion D1, we obtain

�
D1 · U ¼ D1 · UP

D1 × UP ¼ 0
(10)

and �
D1 × U ¼ D1 × US

D1 · US ¼ 0
: (11)

According to equations 10 and 11, the pure P wave and pure S wave
can be separated using the formula (the details are shown in
Appendix B): 8<

:
UP ¼ D1

�
D1 ·

U
jD1j2

�
US ¼ −D1 ×

�
D1 × U

jD1j2
� : (12)

Then, adding i ¼ ffiffiffiffiffiffi
−1

p
to equation 12 gives8<

:
UP ¼ iD1ðiD1 · W1Þ

US ¼ −iD1 × ðiD1 ×W1Þ
W1 ¼ − U

jD1j2
: (13)

Equation 13 is transformed into the spatial domain as follows:�
uP ¼ ∇̄ð∇̄ · w1Þ

uS ¼ −∇̄ × ð∇̄ × w1Þ ; (14)

where the operator ∇̄ is

∇̄ ¼
�
∂x
rðxÞ∂z

�
; (15)

with

rðxÞ ¼ r2ðxÞ
r1ðxÞ þ r4ðxÞ∂2z

r1ðxÞ∂2xþr3ðxÞ∂2z
;

r1ðxÞ ¼ ð1þ 2εðxÞÞV2
PðxÞ − V2

SðxÞ;
r2ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ 2δðxÞÞV2

PðxÞ − V2
SðxÞ�½V2

PðxÞ − V2
SðxÞ�

q
;

r3ðxÞ ¼ V2
PðxÞ − V2

SðxÞ;
r4ðxÞ ¼ 2ðδðxÞ − εðxÞÞV2

PðxÞðV2
PðxÞ − V2

SðxÞÞ; (16)

where ∂x and ∂z represent the first-order spatial derivatives along the
x- and z-directions, respectively, and w1 is the auxiliary wavefield
that satisfies

½∂2x þ r2ðxÞ∂2z �w1ðxÞ ¼ uðxÞ: (17)

Equations 14–17 constitute the first-order pseudo-Helmholtz
decomposition formulas. By assuming δ ¼ ε, then r4 ¼ 0, the first-
order pseudo-Helmholtz decomposition is reduced to the zero-order
pseudo-Helmholtz decomposition. A similar 3D zero-order pseudo-
Helmholtz decomposition method has been proposed by Zuo et al.
(2022). By assuming δ ¼ ε ¼ 0, the first-order pseudo-Helmholtz
decomposition is further reduced to the Helmholtz decomposition
in isotropic media.

VTI Helmholtz decomposition T153
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First-order pseudo-Helmholtz decomposition with
wavefront’s phase direction

The operator, r1ðxÞ þ ððr4ðxÞ∂2zÞ=ðr1ðxÞ∂2x þ r3ðxÞ∂2zÞÞ, acts in
the denominator in equation 17, which leads to implementation diffi-
culty and extra high costs. Yang et al. (2019) solve the Poisson equa-
tion 17 approximately by assuming kx ¼ kz. To more accurately solve
the Poisson equation 17, we present a new pseudo-Helmholtz decom-
position operator based on the phase direction of the wavefront.
In the wavenumber domain, the wavenumber vector k ¼ ðkx; kzÞ

indicates the phase direction of the corresponding plane wave. The
unit vector of the phase direction n can be computed by

n ¼ ðnx; nzÞ ¼
k
jkj : (18)

Then, the operator D1 turns into

D ¼
�
kx
r 0kz

�
; (19)

with

r 0 ¼ r2

r1 þ r4n2z
r1n2xþr3n2z

: (20)

Replacing the operator D1 in equations 10–13 with D, then
transforming them to the spatial domain, gives�

uP ¼ ∇ 0ð∇ 0 · wÞ
uS ¼ −∇ 0 × ð∇ 0 × wÞ ; (21)

where the new pseudo-Helmholtz decomposition operator ∇ 0 is

∇ 0 ¼
�
∂x
r 0ðxÞ∂z

�
; (22)

r 0ðxÞ ¼ r2ðxÞ
r1ðxÞ þ r4ðxÞn2z

r1ðxÞn2xþr3ðxÞn2z
; (23)

and w satisfies the following anisotropic Poisson equation:

∂2wðx; zÞ
∂x2

þ ðr 0ðxÞÞ2 ∂
2wðx; zÞ
∂z2

¼ uðx; zÞ: (24)

Appendix C gives the corresponding derivation and formulas for 3D
anisotropic elastic media.
In the spatial domain, the phase direction vector n can be replaced

by using the local phase direction:

n ¼ ðnx; nzÞ ¼
∇u
j∇uj : (25)

This approach to computing the phase direction can also be seen
in Xu and Zhou (2014) for tilted transversely isotropic acoustic
wavefield modeling. A more accurate way to compute the local
phase direction is the optical flow (Horn and Schunck, 1981;

Barron and Thacker, 2005; Xie et al., 2022). Where multiple events
cross over each other, the computed wavefront phase direction is an
average direction, which is inaccurate for each individual event.
However, the wavefront phase direction in this paper is mainly used
for the higher-order term in the denominator of equation 23. There-
fore, even if the higher-order term contains some errors, it has an
insignificant impact on the result at the location of the wave cross-
ing. Moreover, the wavefield decomposition is mainly applied in the
ERTM, which uses smooth velocity models, and thus, the wave
crossings are reduced greatly.
Equations 21–25 form a new first-order pseudo-Helmholtz wave-

field decomposition method. Its main cost is to solve the anisotropic
Poisson equation 24. This anisotropic Poisson equation can be solved
effectively by using SOR iteration with alternating sweeping order-
ings (Kincaid and Young, 1972; Zhao, 2005). Here, the second-order
derivative is calculated using the sixth-order central finite difference.
Denoting �

aðxÞ ¼ 1

bðxÞ ¼ ðr 0ðxÞÞ2 ; (26)

the SOR iteration formula for equation 24 is as follows:

wðkþ1Þ
i;j ¼β

ui;j−
ai;j
Δx2

P
3
n¼1cnðwðkÞ

iþn;jþwðkþ1Þ
i−n;j Þ− bi;j

Δz2
P

3
n¼1cnðwðkÞ

i;jþnþwðkþ1Þ
i;j−n Þ

c0

�
ai;j
Δx2þ

bi;j
Δz2

	

þð1−βÞwðkÞ
i;j ; (27)

where ui;j is the input wavefield, w
ðkÞ
i;j represents the value of the kth

iteration at position (i,j), cn represents the finite-difference coeffi-
cients, and β is the relaxation factor. The SOR convergence criterion
is β ∈ ð0; 2Þ. Here, β is generally evaluated by trial and error ac-
cording to numerical effectiveness. In this paper, experimental ex-
amples use β ¼ 1.9. To accelerate the convergence, SOR iteration
with alternating sweeping orderings sweeps the entire region in the
following four orders:

ðiÞ i ¼ 1∶I; j ¼ 1∶J; ðiiÞ i ¼ I∶1; j ¼ 1∶J;

ðiiiÞ i ¼ I∶1; j ¼ J∶1; ðivÞ i ¼ 1∶I; j ¼ J∶1: (28)

SOR starts with the sweeping ordering of (i) in the first iteration
and then changes to subsequent sweeping orderings in the next three
iterations. After every four iterations, SOR restarts the sweeping
orderings. The solution obtained from the previous sweeping order-
ing is taken as the initial value of the next sweeping ordering. The
anisotropic Poisson equation 24 is then solved. There is no need to
build a large sparse matrix, which can save the computation costs
effectively. More details related to SOR iteration and alternating
sweeping orderings can be found in Kincaid and Young (1972)
and Zhao (2005).

EXAMPLES

In this section, three numerical experiments are presented to
show the effectiveness of the proposed first-order pseudo-Helm-
holtz decomposition for VTI wavefield separation. The anisotropic
Poisson equation 24 is solved by using SOR iteration with alternat-
ing sweeping orderings.
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VTI layered model

In the first example, the density of the layered model is
ρ ¼ 1000 kg=m3, and other parameters are shown in Figure 1. The
model is discretized using a 1000 × 300 grid with a grid spacing of
10m.AP-wave source is excited at (distance = 5 km, depth = 0.5 km)
using a 15 Hz Ricker wavelet.

The particle velocity wavefields are shown in Figure 2. Figures 3
and 4 depict the P/S waves obtained using the zero-order pseudo-
Helmholtz decomposition method presented by Yang et al. (2019)
and the first-order pseudo-Helmholtz decomposition method based
on the wavefront phase proposed in this paper, respectively. From
Figure 3, it can be observed that the P waves obtained using the
zero-order pseudo-Helmholtz decomposition method contain residual
S waves, and similarly, the S waves also contain residual P waves
(as indicated by the black arrows). In contrast, Figure 4 shows that
the proposed first-order method has almost no residual wavefield
at the same location. Therefore, the proposed method is effective
for nonelliptical anisotropic layered models.

Hess model

In the second example, the Hess model is applied to show the
effectiveness of the new pseudo-Helmholtz decomposition method.
The model parameters of the Hess model are shown in Figure 5. The
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Figure 1. The VTI layered model with its parameters.
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Figure 2. (a) The horizontal and (b) vertical components of the par-
ticle velocity wavefields in the VTI layered model at a propagation
time of 0.85 s.
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Figure 3. The horizontal and vertical components of the P/S waves
in the VTI layered model separated by using the zero-order pseudo-
Helmholtz decomposition operator. (a and b) The horizontal and
vertical components of the P waves, respectively. (c and d) The
counterparts of (a and b) for the S waves, respectively. The black
arrows indicate the wave leakages.
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Figure 5. (a–d) The parameters of the Hess model.
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Figure 4. The horizontal and vertical components of the P/Swaves
in the VTI layered model separated by using the new first-order
pseudo-Helmholtz decomposition operator. (a and b) The horizontal
and vertical components of the P waves, respectively. (c and d) The
counterparts of (a and b) for the S waves, respectively. The black
arrows correspond to those in Figure 3.
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S-wave velocity is the P-wave velocity divided by
ffiffiffi
3

p
. A P-wave

source with a 5 Hz Ricker wavelet is positioned in the center of
the surface. The horizontal and vertical components of the VTI
wavefield are shown in Figure 6.
Figures 7 and 8 show the horizontal and vertical components of the

separated P/S waves obtained using the zero-order pseudo-Helmholtz
decomposition method and the new first-order pseudo-Helmholtz de-
composition method, respectively. As shown in Figures 7a, 7b, 8a,
and 8b, both methods separate the P wave effectively. However, the
wiggle display in Figure 9 indicates that the new first-order pseudo-
Helmholtz decomposition produces more accurate amplitudes than
the zero-order pseudo-Helmholtz decomposition.
The decomposed S-wave results are shown in Figures 7c, 7d, 8c,

and 8d. As can be seen, the zero-order pseudo-Helmholtz decom-
position method produces discernible P-wave residuals in the S
wave, as indicated by the arrows. In contrast, the energy leakage is
reduced significantly in Figure 8c and 8d, thanks to the new first-
order pseudo-Helmholtz decomposition method.

Marmousi model

In addition to the Hess model, another general model, Marmousi,
is provided here to demonstrate the effectiveness of the method de-
scribed in this paper. The size and parameters of the Marmousi model
are shown in Figure 10. In this model, the S-wave velocity is set as
VS ¼ VP=

ffiffiffi
3

p
. The grid size of the discrete model is 10 m, and the

time interval is 1 ms. A 15 Hz Ricker wavelet is used to excite a
P-wave source at the middle of the surface. The previous examples
have proven that the newmethod is better than the zero-order pseudo-
Helmholtz decomposition method, which shares the same limitation
as observed in theMarmousi model. To avoid repetition, this example
only displays the decomposition results of the new method.
Figure 11a and 11b shows the particle velocity wavefields of the

horizontal and vertical components, respectively. Figure 11c–11f
shows the P/S waves of the horizontal and vertical components
obtained by using the new method. This method can decompose
the P/S waves well. Figure 11g and 11h shows the wavefield resid-
uals by subtracting the decomposed P and S waves from the original
wavefields. The error is about two orders of magnitude smaller than
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Figure 7. (a) The horizontal and (b) vertical components of the sep-
arated P wavefield. (c) The horizontal and (d) vertical components
of the separated S wavefield obtained using the zero-order pseudo-
Helmholtz decomposition method. The black arrows point to the
leaked P-wave energy.
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Figure 6. (a) The horizontal and (b) vertical components of the VTI
wavefields from the Hess model at a propagation time of 3.6 s.
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Figure 8. (a) The horizontal and (b) vertical components of the sep-
arated P wavefield. (c) The horizontal and (d) vertical components
of the separated S wavefield obtained using the new pseudo-Helm-
holtz decomposition method. The black arrows correspond to those
in Figure 7. We see very little leaking P waves at the location in-
dicated by the arrows.
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and d) Enlarged views of the dashed boxes in (a and b), respectively.

T156 Yao et al.

D
ow

nl
oa

de
d 

06
/1

2/
24

 to
 1

28
.4

2.
16

7.
70

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
23

-0
57

4.
1



the original wavefield. Therefore, the new method not only decom-
poses the anisotropic wavefield effectively but also reconstructs it
with high accuracy.
In summary, three examples demonstrate that the new first-order

pseudo-Helmholtz decomposition method can achieve a clean
P-/S-wave decomposition for elastic VTI wavefields and is also
suitable for complex VTI models.

DISCUSSION

Precision analysis of wavefield decomposition

The three previous examples have demonstrated that the new
first-order pseudo-Helmholtz decomposition method is effective
and efficient. Here, we carry out a quantitative precision analysis by
varying the anisotropic parameter difference, i.e., ε − δ, and the
VP=VS ratio for a set of homogeneous models. The method of
Zhang and McMechan (2010), which is accurate for homogeneous
models, is used to compute the reference results.
The homogeneous models are discretized into a 600 × 600 grid

with a spacing of 10 m. A vertical force source of a 15 Hz Riker
wavelet is excited in the center of the model. The wavefield snapshot
at 0.6 s was used to analyze the wavefield decomposition accuracy.
Figure 12a shows how the relative errors of P/S waves change with

ε − δ. The model parameters are VP=VS ¼ ffiffiffi
3

p
, VP ¼ 3000 m=s,

VS ¼ 1732 m=s, ρ ¼ 1000 kg=m3, δ ¼ 0.1, ε ∈ ½0.1; 0.4�, and
ε − δ ∈ ½0; 0.3�. The accuracy of this method decreases as the value
of ε − δ increases. The error is less than 0.5%, when ε − δ ¼ 0.05,
which is a commonly encountered weakly anisotropic medium in
practice. Even for a very strong anisotropic medium, ε − δ ¼ 0.3,
the error is less than 6%.
Figure 12b shows how the relative errors of P/S waves changewith

the ratio of VP=VS. The model parameters are VP ¼ 3000 m=s,
ρ ¼ 1000 kg=m3, ε ¼ 0.3, δ ¼ 0.1, VS ∈ ½1500; 2500�, and
VP=VS ∈ ½1.2; 2�. As shown in Figure 12b, the accuracy decreases
first and then increases as the ratio of VP=VS increases. Note that the
test models, i.e., ε ¼ 0.3, δ ¼ 0.1, are strongly anisotropic. The er-
rors are much smaller for the commonly encountered weakly aniso-
tropic media. Furthermore, the anisotropy parameter difference,
i.e., ε − δ, has a greater effect on the decomposition accuracy than
the VP=VS ratio.

Strongly anisotropic media

The proposed first-order pseudo-Helmholtz decomposition method
is derived by taking the first-order Taylor expansion on the eigenvalue
of the Christoffel equation around ε − δ. The high-order terms are
discarded, resulting in errors when ε ≠ δ. The larger the ε − δ, the
greater the error. Previous examples and quantitative analyses dem-
onstrate that the new method is quite accurate for a commonly en-
countered weakly anisotropic medium, e.g., ε − δ ¼ 0.05, and
sufficiently accurate for a moderately strong anisotropic medium,
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Figure 11. The P-/S-wave separation for the Marmousi model.
(a) The horizontal and (b) vertical components of the particle velocity
wavefields at a propagation time of 1.1 s. (c and d) The horizontal and
vertical components of the P waves, respectively. (e and f) The coun-
terparts of (c and d) for the S waves, respectively. (g and h) The hori-
zontal and vertical components of the wavefield residuals obtained by
subtracting the input wavefield from the separated P and S waves,
respectively. The residual wavefields are two orders of magnitude
smaller than the original wavefields.
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Figure 10. (a–d) The parameters of the Marmousi model.
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e.g., the first-layered model, which has ε ¼ 0.3 and δ ¼ 0.2. To fur-
ther understand the limits of the new method, we modified the aniso-
tropic parameters of the layered model of the first example into
ε ¼ 0.25, 0.3, and 0.4 and δ ¼ 0.05, 0.1, and 0.15, which is strongly
anisotropic, i.e., jε − δj ≥ 0.2 (Thomsen, 1986). Figure 13 shows the
decomposed results. As expected, there are some leaks in the P and S
waves, but they are insignificant. The residuals plotted in Figure 13g
and 13h are two orders of magnitude smaller than the original wave-
fields. Figure 14 shows one trace of the separated P/S waves and
original wavefields at a distance of 7 km. As can be seen, although
there are some amplitude differences and leakages in certain locations,
overall, this method has good adaptability to strongly anisotropic
media. Thus, this example further demonstrates that the new method
is robust and should be sufficient for imaging and inversion.

Effects of noise in P-/S-wave decomposition

To illustrate the effectiveness of the new first-order pseudo-Helm-
holtz decomposition in resisting noise, Gaussian noise is added to the
input wavefields of the Marmousi example. The noise-contaminated
wavefields have a signal-to-noise ratio of 1.6 for the horizontal com-
ponent and 1 for the vertical component, as shown in Figure 15a and
15b. The separated P and S waves are shown in Figure 15c–15f.
Compared with the noise-free results in Figure 11, we conclude that
the new method is quite effective in resisting noise.

Computational efficiency analysis

The main computational cost of the proposed method lies in solv-
ing the Poisson equation 24. There are two Poisson equations for 2D
wavefields and three Poisson equations for 3D wavefields. The com-
putational complexity of SOR in equation 27 is α · nt · nx · nz. Here,
nx and nz are the dimensions of the wavefield and nt is the number of
iterations. Based on our tests, 20 iterations are sufficient for the sim-
ple models, such as the homogeneous models and layered models,
and 60 iterations are sufficient for the complex models, e.g., the Mar-
mousi model. The scalar α depends on the finite-difference order, and
it is 28 for the six-order finite difference. The proposed method has a
computational cost similar to that of the zero-order pseudo-Helm-
holtz decomposition method by Yang et al. (2019). However, their
first-order method solves six Poisson equations for the 2D wave-
fields. The low-rank method proposed by Cheng and Fomel
(2014) includes a one-time forward Fourier transform and r times
inverse Fourier transforms, resulting in a computational complexity
of c · ðrþ 1Þ · nx · nz · logðnx · nzÞ. Here, the value of c depends
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Figure 14. Wiggle display of the (a) horizontal and (b) vertical
components of the P and S waves at a distance of 7 km, respectively.
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Figure 15. The P-/S-wave separation for the Gaussian noise-con-
taminated wavefields from the Marmousi model. (a) The horizontal
and (b) vertical components of the particle velocity wavefields at a
propagation time of 1.1 s. (c and d) The horizontal and vertical com-
ponents of the P waves, respectively. (e and f) The counterparts of
(c and d) for the S waves, respectively.
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Figure 13. (a) The horizontal and (b) vertical components of particle
velocity wavefields in the strongly anisotropic layered model at a
propagation time of 1 s. (c and d) The horizontal and vertical compo-
nents of the P waves, respectively. (e and f) The counterparts of (c and
d) for the S waves, respectively. The black arrows indicate the notice-
able P-wave leakage. (g and h) The horizontal and vertical components
of the wavefield residuals obtained by subtracting the input wavefield
from the separated P and S waves, respectively. The residual wave-
fields are two orders of magnitude smaller than the original wavefields.
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on the specific implementation and hardware; typically, this is eight
(Golub and Van Loan, 2013) and r denotes the reduced rank. Cheng
and Fomel (2014) choose r ¼ 6 for the Hess VTI model. The low-
rank method also involves the cost of matrix decomposition, which is
one to two orders of magnitude higher than Fourier transforms (refer
to Tables 1 and 2 in Cheng and Fomel, 2014). To mitigate this cost,
they propose precomputing the matrices. Therefore, the proposed
pseudo-Helmholtz method achieves a similar level of computational
efficiency as the low-rank method when the matrix decomposition is
not taken into account.

CONCLUSION

In this paper, we propose a new pseudo-Helmholtz decomposition
method based on the wavefront’s phase direction for elastic VTI
wavefields. It overcomes the difficulty of implementing the first-order
pseudo-Helmholtz decomposition and its associated anisotropic Pois-
son equation. SOR iteration with alternating sweeping orderings is
used to solve the Poisson equation iteratively. It is more efficient than
the LU decomposition methods. Compared with the first-order Helm-
holtz decomposition method, the new pseudo-Helmholtz decompo-
sition method requires much less computational cost, and more
importantly, it is easier to implement the new method in the space
domain. Compared with the zero-order pseudo-Helmholtz decompo-
sition method, the new pseudo-Helmholtz decomposition method can
obtain more accurate P-/S-wave decomposition at a similar computa-
tional cost. Although the first-order Taylor approximation is applied
in the new pseudo-Helmholtz decomposition method, accuracy
analysis and numerical experiments demonstrate that the accuracy
is sufficient for normal elastic VTI models.
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APPENDIX A

DERIVATION OF THE EIGENVALUES AND
VECTORS OF THE CHRISTOFFEL EQUATION

Based on the Christoffel equation 3, we denote

A ¼
�

c11k2x þ c55k2z ðc13 þ c55Þkxkz
ðc13 þ c55Þkxkz c55k2x þ c33k2z

�
(A-1)

and

V ¼
�
V1

V2

�
: (A-2)

Then, λ ¼ ρω2 ¼ ρk2v2 (v is the phase velocity) and V are the
eigenvalue and eigenvector of the matrix A, respectively. According
to the eigen analysis theory, we form the following determinant:

jA − λEj ¼




 c11k2x þ c55k2z − λ ðc13 þ c55Þkxkz
ðc13 þ c55Þkxkz c55k2x þ c33k2z − λ





 ¼ 0:

(A-3)

From equation A-3, we obtain a quadratic equation for the variable λ:

aλ2 þ bλþ c ¼ 0; (A-4)

where8<
:

a¼ 1

b¼−½ðc11k2x þ c55k2zÞþ ðc55k2xþ c33k2zÞ�
c¼ ðc11k2xþ c55k2zÞ · ðc55k2x þ c33k2zÞ− ðc13þ c55Þ2k2xk2z

:

(A-5)

Then, λ in equation A-4 can be solved by

λ1;2 ¼
−b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ac

p

2a

¼ ðc11 þ c55Þk2x þ ðc33 þ c55Þk2z
2

� ½ðc11 − c55Þk2x þ ðc33 − c55Þk2z �
2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4½ðc11 − c55Þ · ðc55 − c33Þ þ ðc13 þ c55Þ2�k2xk2z

½ðc11 − c55Þk2x þ ðc33 − c55Þk2z �2

s
:

(A-6)

Note c11, c13, c33, and c55 can be replaced with the Thomsen param-
eters given in equation 2. Therefore,

λ1;2 ¼ ρ
½ð1þ2εÞV2

PþV2
S�k2xþ½V2

PþV2
S�k2z

2

�ρ
½ð1þ2εÞV2

P−V2
S�k2xþ½V2

P−V2
S�k2z

2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ðδ− εÞV2

PðV2
P−V2

SÞk2xk2z
½ðð1þ2εÞV2

P−V2
SÞk2xþðV2

P−V2
SÞk2z �2

s
: (A-7)

Let V1 ¼
�
x1
x2

�
. Then, we obtain� ðc11k2x þ c55k2zÞx1 þ ðc13 þ c55Þkxkzx2 ¼ λx1

ðc13 þ c55Þkxkzx1 þ ðc55k2x þ c33k2zÞx2 ¼ λx2
: (A-8)

Assuming x1 ¼ kx, the second equation in equation A-8 gives

x2 ¼
ðc13 þ c55Þk2xkz

λ1 − ðc55k2x þ c33k2zÞ
: (A-9)
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Therefore, the eigenvector associated with λ1 can be written as

V1 ¼
�
kx
ðc13þc55Þk2xkz

λ1−ðc55k2xþc33k2z Þ

�
¼

"
kx
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ2δÞV2

P
−V2

S
�½V2

P
−V2

S
�

p
k2xkz

λ1−ρðV2
S
k2xþV2

P
k2z Þ

#
:

(A-10)

Similarly, assuming x2 ¼ −kx, the first equation in equation A-8
gives

x1 ¼
−ðc13 þ c55Þk2xkz

λ2 − ðc11k2x þ c55k2zÞ
: (A-11)

Therefore, the eigenvector corresponding to λ2 can be written as

V2 ¼
� −ðc13þc55Þk2xkz
λ2−ðc11k2xþc55k2z Þ
−kx

�
¼

"
−ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ2δÞV2

P
−V2

S
�½V2

P
−V2

S
�

p
k2xkz

λ2−ρðð1þ2εÞV2
P
k2xþV2

S
k2zÞ

−kx

#
:

(A-12)

For the nonelliptic anisotropy problem (ε ≠ δ), when ε − δ → 0,
the eigenvalues can be obtained by the first-order Taylor expansion
of the radical term of equation A-7:

(
λ1 ¼ ρV2

P½ð1þ 2εÞk2x þ k2z � þ ρ
2ðδ−εÞV2

P
ðV2

P
−V2

S
Þk2xk2z

½ð1þ2εÞV2
P
−V2

S
�k2xþðV2

P
−V2

S
Þk2z

λ2 ¼ ρV2
S½k2x þ k2z � − ρ

2ðδ−εÞV2
P
ðV2

P
−V2

S
Þk2xk2z

½ð1þ2εÞV2
P
−V2

S
�k2xþðV2

P
−V2

S
Þk2z

:

(A-13)

Then, the eigenvectors of A can be obtained by substituting
equation A-13 into equation A-10 and equation A-12:8>>>>>>>><

>>>>>>>>:

V1 ¼

2
64
kx ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ð1þ2δÞV2
P
−V2

S
�½V2

P
−V2

S
�

p
½ð1þ2εÞV2

P
−V2

S
�þ 2ðδ−εÞV2

P
ðV2

P
−V2

S
Þk2z

½ð1þ2εÞV2
P
−V2

S
�k2xþðV2

P
−V2

S
Þk2z

kz

3
75

V2 ¼

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ2δÞV2

P
−V2

S
�½V2

P
−V2

S
�

p
½ð1þ2εÞV2

P
−V2

S
�þ 2ðδ−εÞV2

P
ðV2

P
−V2

S
Þk2z

½ð1þ2εÞV2
P
−V2

S
�k2xþðV2

P
−V2

S
Þk2z

kz

−kx

3
75
: (A-14)

Physically, λ1 and λ2 represent the phase velocities of the P and S
waves, respectively. In addition, V1 and V2 denote the polarization
directions of the P and S waves, respectively. Based on equa-
tion A-14, the eigenvectors of the matrix A can also be expressed
as follows:

8>>>>>>>>><
>>>>>>>>>:

V1 ¼

2
64
kx ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ð1þ2δÞV2
P
−V2

S
�½V2

P
−V2

S
�

p
½ð1þ2εÞV2

P
−V2

S
�þ 2ðδ−εÞV2

P
ðV2

P
−V2

S
Þk2z

½ð1þ2εÞV2
P
−V2

S
�k2xþðV2

P
−V2

S
Þk2z

kz

3
75 ¼

�
kx
rkz

�

V2 ¼

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ2δÞV2

P
−V2

S
�½V2

P
−V2

S
�

p
½ð1þ2εÞV2

P
−V2

S
�þ 2ðδ−εÞV2

P
ðV2

P
−V2

S
Þk2z

½ð1þ2εÞV2
P
−V2

S
�k2xþðV2

P
−V2

S
Þk2z

kz

−kx

3
75 ¼

�
rkz
−kx

� ;

(A-15)

where

r ¼ r2

r1 þ r4k2z
r1k2xþr3k2z

; (A-16)

where r1, r2, r3, and r4 are the functions given in equation 9.
Because the elliptic anisotropy problem (ε ¼ δ) is a special case

of the non-elliptic anisotropy problem, its eigenvalues and eigen-
vectors of A can be obtained in equations A-13 and A-15:�

λ1 ¼ ρV2
P½ð1þ 2εÞk2x þ k2z �

λ2 ¼ ρV2
S½k2x þ k2z � (A-17)

and

8<
:

V1 ¼
�
kx
r2
r1
kz

�

V2 ¼
� r2
r1
kz

−kx

� : (A-18)

APPENDIX B

DERIVATION OF THE FIRST-ORDER
PSEUDO-HELMHOLTZ DECOMPOSITION

According to Helmholtz’s theorem, the vector anisotropic elastic
wavefield u can be resolved into the sum of a curl-free vector field
and a divergence-free vector field:

u ¼ uP0 þ uS0 ; (B-1)

where uP0 and uS0 are the P and S wavefields, respectively. Applying
the Fourier transform to u ¼ ðux; uzÞ gives U ¼ ðUx;UzÞ in the
wavenumber domain. The terms UP

0 and US
0 are the vector P and

S wavefields in the wavenumber domain, respectively, satisfying�
V1 · U ¼ V1 · UP

0
V1 × UP

0 ¼ 0
(B-2)

and �
V1 × U ¼ V1 × US

0
V1 · US

0 ¼ 0
: (B-3)

By applying the first-order Taylor expansion in equation 5, the
eigenvector V1 becomes D1. Then, equations B-2 and B-3 become�

D1 · U ¼ D1 · UP

D1 × UP ¼ 0
(B-4)

and �
D1 × U ¼ D1 × US

D1 · US ¼ 0
: (B-5)

Here,
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8>>><
>>>:

D1 ¼
�
kx
rkz

�
r ¼ r2

r1þ
r4k

2
z

r1k
2
xþr3k

2
z

: (B-6)

Based on equation B-4, we can obtain

�
kxUx þ rkzUz ¼ kxU

p
x þ rkzU

p
z

rkzU
p
x − kxU

p
z ¼ 0

: (B-7)

Hence

�
Up

x ¼ ðk2xUx þ rkxkzUzÞ=ðk2x þ r2k2zÞ
Up

z ¼ ðrkxkzUx þ r2k2zUzÞ=ðk2x þ r2k2zÞ : (B-8)

Moreover, from equation B-5, we obtain

�
rkzUx − kxUz ¼ rkzUs

x − kxUs
z

kxUs
x þ rkzUs

z ¼ 0
: (B-9)

Thus, we have

�
Us

x ¼ ðr2k2zUx − rkxkzUzÞ=ðk2x þ r2k2zÞ
Us

z ¼ ðk2xUz − rkxkzUxÞ=ðk2x þ r2k2zÞ : (B-10)

Formula B-1 can also be written as

�
Ux ¼ Up

x þ Us
x

Uz ¼ Up
z þUs

z
: (B-11)

Combining this formula with equations B-8, B-10, and B-11, we
have

�
Ux ¼ ðk2xUx þ r2k2zUxÞ=ðk2x þ r2k2zÞ
Uz ¼ ðk2xUz þ r2k2zUzÞ=ðk2x þ r2k2zÞ : (B-12)

Formulas B-8, B-10, and B-12 can also be expressed as follows:

8>><
>>:

UP ¼ D1

�
D1 ·

U
jD1j2

�
US ¼ −D1 ×

�
D1 × U

jD1j2
�

½k2x þ r2k2z � U
jD1j2 ¼ U

: (B-13)

After adding i ¼ ffiffiffiffiffiffi
−1

p
to equation B-13, we obtain

8>>><
>>>:

UP ¼ iD1ðiD1 · WÞ
US ¼ −iD1 × ðiD1 ×WÞ
W ¼ − U

jD1j2
−½k2x þ r2k2z �W ¼ U

: (B-14)

APPENDIX C

NEW FIRST-ORDER PSEUDO-HELMHOLTZ
DECOMPOSITION FOR 3D WAVEFIELDS

For 3D VTI media, the matrix A in equation A-1 turns into

A¼

2
64c11k

2
xþc66k2yþc44k2z ðc11−c66Þkxky ðc13þc44Þkxkz

ðc11−c66Þkxky c66k2xþc11k2yþc44k2z ðc13þc44Þkykz
ðc13þc44Þkxkz ðc13þc44Þkykz c44k2xþc44k2yþc33k2z

3
75:

(C-1)

Then, the eigenvalues of matrix A can be obtained as follows:

λ1;3 ¼ ρ
½ð1þ 2εÞV2

P þ V2
S�ðk2x þ k2yÞ þ ½V2

P þ V2
S�k2z

2

� ρ
½ð1þ 2εÞV2

P − V2
S�ðk2x þ k2yÞ þ ½V2

P − V2
S�k2z

2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ðδ − εÞV2

PðV2
P − V2

SÞðk2x þ k2yÞk2z
½ðð1þ 2εÞV2

P − V2
SÞðk2x þ k2yÞ þ ðV2

P − V2
SÞk2z �2

s
;

λ2 ¼ ρV2
S½ð1þ 2γÞðk2x þ k2yÞ þ k2z �: (C-2)

For the non-elliptic anisotropy problem (ε ≠ δ), the eigenvalues
can be obtained by the first-order Taylor expansion of the square-
root term of equation C-2:

8>><
>>:
λ1¼ρV2

P½ð1þ2εÞðk2xþk2yÞþk2z �þρ
2ðδ−εÞV2

P
ðV2

P
−V2

S
Þðk2xþk2yÞk2z

ðð1þ2εÞV2
P
−V2

S
Þðk2xþk2yÞþðV2

P
−V2

S
Þk2z

λ2¼ρV2
S½ð1þ2γÞðk2xþk2yÞþk2z �

λ3¼ρV2
S½k2xþk2yþk2z �−ρ

2ðδ−εÞV2
P
ðV2

P
−V2

S
Þðk2xþk2yÞk2z

ðð1þ2εÞV2
P
−V2

S
Þðk2xþk2yÞþðV2

P
−V2

S
Þk2z

;

(C-3)

where λ1; λ2, and λ3 represent the phase velocities of the P, SH, and
SV waves, respectively.
The Christoffel equation for 3D VTI media is

8><
>:
½c11k2xþc66k2yþc44k2z �x1þ½ðc11−c66Þkxky�x2þ½ðc13þc44Þkxkz�x3¼λx1
½ðc11−c66Þkxky�x1þ½c66k2xþc11k2yþc44k2z �x2þ½ðc13þc44Þkykz�x3¼λx2
½ðc13þc44Þkxkz�x1þ½ðc13þc44Þkykz�x2þ½c44k2xþc44k2yþc33k2z �x3¼λx3

:

(C-4)

Similar to the 2D case, the eigenvectors for 3D problems can also be
obtained by the Christoffel equation C-4 using the first-order Taylor
expansion method. Let the eigenvectors correspond to λ1, λ2, and λ3
be V1, V2, and V3, respectively. Then,8>>>>>>>>>>>><

>>>>>>>>>>>>:

V1 ¼
2
4 kx

ky
rkz

3
5

V2 ¼
"−ky

kx
0

#

V3 ¼
" −rkxkz
−rkykz
k2x þ k2y

#
; (C-5)
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with

r ¼ r2

r1 þ r4k2z
r1ðk2xþk2yÞþr3k2z

: (C-6)

Physically,V1;V2, and V3 are the polarization directions of the P, SH,
and SVwaves, respectively. Thus, we define the operatorD1 as follows:

D1 ¼
2
4 kx
ky
rkz

3
5: (C-7)

In the wavenumber domain, the wavenumber vector
k ¼ ðkx; ky; kzÞ indicates the phase direction of the corresponding
plane wave. Let the unit vector of the phase direction be n. Then,
it can be expressed by

n ¼ ðnx; ny; nzÞ ¼
k
jkj : (C-8)

Then, the operator D1 turns to

D ¼
2
4 kx
ky
r 0kz

3
5; (C-9)

where

r 0 ¼ r2

r1 þ r4n2z
r1ðn2xþn2yÞþr3n2z

: (C-10)

Similar to replacing the operator D1 in equations 10–13 with D, and
then transforming them to the spatial domain, we have�

uP ¼ ∇ 0ð∇ 0 · wÞ
uS ¼ −∇ 0 × ð∇ 0 × wÞ ; (C-11)

where the new pseudo-Helmholtz decomposition operator ∇ 0 is

∇ 0 ¼
2
4 ∂x
∂y
r 0ðxÞ∂z

3
5; (C-12)

where

r 0ðxÞ ¼ r2ðxÞ
r1ðxÞ þ r4ðxÞn2z

r1ðxÞðn2xþn2yÞþr3ðxÞn2z
; (C-13)

and w satisfies the following anisotropic Poisson equation:�
∂
∂x2

þ ∂
∂y2

þ ðr 0ðxÞÞ2 ∂
∂z2

	
w ¼ u: (C-14)
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